Medizin
Präzise Unterscheidung von Hirntumoren mit Deep Learning und Radiomics
Die Unterscheidung von Primärtumoren und Metastasen kann bei Hirntumoren rasch und präzise mittels Radiomics und Deep Learning-Algorithmen erfolgen. Dies ist die Kernaussage einer Studie der Karl Landsteiner Privatuniversität für Gesundheitswissenschaften (KL Krems), die jetzt in Metabolites veröffentlicht wurde (1). Sie zeigt, dass Magnetresonanz-basierte radiologische Daten des O2-Stoffwechsels von Tumoren eine hervorragende Grundlage für die Unterscheidung mit Hilfe von neuronalen Netzwerken bieten. Diese Kombination von „oxygen metabolic radiomics“ mit Analysen durch spezielle Künstliche Intelligenz war dabei den Auswertungen durch menschliche Expert:innen in allen wesentlichen Kriterien deutlich überlegen. Dieses ist umso beeindruckender, als wesentliche Sauerstoffwerte zwischen den Tumorarten nicht maßgeblich voneinander abwichen – und neuronale Netzwerke auf deren Grundlage dennoch eindeutige Unterscheidungen vornehmen konnten.
Lesen Sie mehr